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analogous mechanism involving radical11 rather than ionic in­
termediates cannot be ruled out at this time. 

l,l-Diphenyl-2-methoxyethylene reacted at low temperature 
also with T P P O and with triethylsilyl hydrotrioxide to produce 
benzophenone in 28% and 57% yields, respectively.16'17 Even vinyl 
aromatics not activated by methoxyl substituents were converted 
by triethylsilyl hydrotrioxide into the corresponding 1,2-dioxetanes; 
TPPO did not react detectably (1H N M R ) with simple 1-aryl-
alkenes at -60 0 C even after 3 days. For example, 25-40 mg each 
of 1-vinylpyrene, 1-vinylnaphthalene,18 and 2-vinylnaphthalene 
reacted with 1.8 equiv of triethylsilyl hydrotrioxide in methylene 
chloride (0.04 M),7 slowly warmed during several hours from -78 
— 25 0 C and then kept at 25 0 C for 12 h, to form the corre­
sponding aromatic aldehydes (accompanied by CL during for­
mation of 1-pyrenecarboxaldehyde) isolated by preparative TLC 
in 35%, 9%, and 23% yields (37%, 58%, and 59% yields based on 
recovered starting material), respectively. These results have both 
mechanistic and synthetic implications. 

We are studying further the mechanism and the scope and 
limitations of these dioxetane-forming chemical reactions as well 
as biological applications. 
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Steichen, D. S.; Foote, C. S. Tetrahedron Lett. 1979, 4363. (b) For elec­
tron-transfer photooxygenation, see: Steichen, D. S.; Foote, C. S. / . Am. 
Chem. Soc. 1981, 103, 1855. (c) cf.: Matsumoto, M.; Kuroda, K. Tetra­
hedron Lett. 1979, 1607. (d) For other enol ethers reacting with 1O2, see: 
Asveld, E. W. H.; Kellogg, R. M. J. Am. Chem. Soc. 1980, 102, 3644. 

(17) Ozonolysis of l,l-diphenyl-2-methoxyethylene apparently leads to 
dimerization and rearrangement: Nakamura, N.; Nojima, M.; Kusabayashi, 
S. J. Am. Chem. Soc. 1986, 108, 4671 and references therein. 

(18) For 1O2 reaction with a vinyl aromatic proceeding apparently exclu­
sively via an endoperoxide, see: (a) Matsumoto, M.; Kondo, K. Tetrahedron 
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The chemistry of thioaldehydes has been of current interest.1-9 

Although many stable thioketones have been synthesized and 
relatively well studied in recent years, thioaldehydes have eluded 
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isolation until very recently because of their extremely high 
tendency toward oligomerization.10 We recently reported the 
first isolation of a stable aromatic thioaldehyde, 2,4,6-ln-tert-
butylthiobenzaldehyde.1 No aliphatic thioaldehyde, however, has 
been isolated so far although Vedejs and his co-workers have 
reported that thiopivaldehyde is relatively long-lived in solution 
(the half-life in chloroform at room temperature is 16 h).2a,b We 
now report the first isolation of a stable, crystalline, aliphatic 
thioaldehyde, tris(trimethylsilyl)ethanethial (1) and its interesting 
reactivities. 

The reaction of tris(trimethylsilyl)methyllithium (2),11 obtained 
from tris(trimethylsilyl)methane12 and methyllithium, with O-ethyl 
thioformate gave the thioaldehyde 1 (16%)13 and vinyl ether 3 
(25%).14-15 

(Me3Si)3CLi + HCOEt -3 ' 3 

1 

Me,Si OEt W / \ 
Me,Si H 

Thioaldehyde 1 is a pink-red crystalline compound (mp 129-131 
0C16) and can be purified by chromatography and recrystallization. 
It can be stored in a refrigerator for a long time without any 
decomposition and is stable at room temperature in the air at least 
for a week. Some spectral data of 1 are listed in Table I. 

Although 1 is stable at room temperature, it undergoes 
Brook-type rearrangement17 upon heating around 80 0 C to give 

(10) Organic Compounds of Sulphur, Selenium, and Tellurium; Specialist 
Periodical Reports; The Chemical Society: London, 1970-1981; Vol. 1-6. 
Voss, J. In Methoden der Organischen Chemie: Klamann, D. Ed.; George 
Thieme Verlag: Stuttgart, 1985; Band 11, pp 188-194. 

(11) Cook, M. A.; Eaborn, C; Jukes, A. E.; Walton, D. R. M. J. Orga-
nomet. Chem. 1970, 24, 529. 

(12) Merker, R. L.; Scott, M. J. J. Am. Chem. Soc. 1963, 85, 2243. 
(13) A typical procedure of the synthesis of 1 follows. O-Ethyl thioformate 

(0.76 g, 8.5 mmol) was added to 2, prepared from tris(trimethylsilyl)methane12 

(1.65 g, 7.08 mmol) and methyllithium (0.829 M solution of ether, 10.5 mL, 
8.5 mmol) in THF (28 mL), at -78 0C. The pale yellow reaction solution 
was stirred for 10 min at -78 0C and for 1.5 h at room temperature. To the 
dark red solution were added aqueous ammonium chloride and ether. The 
dark red organic layer was separated, washed with brine 3 times, dried over 
anhydrous MgSO4, and evaporated under reduced pressure. Residual dark 
red liquid was subjected to chromatography (silica gel, hexane-dichloro-
methane 20:1). The first fraction was 694 mg of a mixture of tris(tri-
methylsilyl)methane (19%) and 5 (25%). The second fraction was 1 (306 mg, 
1.10 mmol, 16%), which was recrystallized from pentane (0.4 mL) at -78 0C 
to give pink-red crystals. Exact mass for C11H28Si3S: 276.1219. Found: 
276.1209. For spectra data, see Table I. 

(14) The vinyl ether 3 is most probably produced by Peterson type reaction 
of i on silica gel. 

1 

(15) All new compounds gave satisfactory spectral data including exact 
mass analysis. For the details, see the supplementary material. 

(16) Decolorization due to the isomerization into 3 began gradually at ca. 
70 0C on measuring the melting point. 
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Table I. Some Spectral Data of 1 

electronic 
spectrum/X^x/nm (t) 

hexane 

518 (15) 
272 (9940) 
212 (4320) 

CH3CN 

503 (14) 
277 (8720) 
211 (5330) 

1H NMR, d 

CDCl3 C6D6 

0.26 (s, 27 H) 0.16 (s, 27 H) 
11.45 (s, 1 H, CHS) 11.45 (s, 1 H, CHS) 

13C NMR, 
5, CDCl3 

2.6 
59.0 
248.2 (CHS) 

29Si NMR, 
5, CDCl3 

-0.22 

IR, cm-', KBr 

1120 (C=S) 

Table II. Thermodynamic Parameters of the Thermolysis of 1 and 5" 

Atf'/kcal 
entry compound mof"1 AS'/eu 

1 1 28.0 ± 0.7 0.4 ± 2.1 
2 6 24.2 ± 1.6 -6.1 ± 4.9 
3b R3SiCH2C(=0)R' 26-33c -4.2 to-16.9 

Un (70 
°C)/h 

16 
1.7 

"The thermolyses were carried out in toluene-</g at 70-90 0C for 1 
and at 56-70 0C for 6. * Reference 17. c E. values. 

vinyl sulfide 4 quantitatively.15 It is noteworthy that 1 does not 
undergo oligomerization but isomerization upon heating. In 
contrast to the thermolysis, the photolysis of 1 (medium-pressure 
Hg lamp, benzene, 5 0C, 17 h) afforded 5 (33%)18 in addition 
to 4 (66%). 

SiMe3 

For comparison, the corresponding aldehyde 6,15 prepared from 
2 and ethyl formate, was also subjected to the thermolysis and 
photolysis under similar conditions to give silyl enol ether 719 

(100%) and tris(trimethylsilyl)methane12 (90%), respectively. 

Me,Si 
3 \ C = 

/ Me3Si 

SSiMe 
/ =c 
\ H 

Me.Si OSiMe, 3 \ / 3 

Me3Si H 

(Me3Si)3CCHO 

The difference in photochemical behavior between 1 and 6 is 
noteworthy. The formation of 5 from 1 is especially interesting 
since this type of reaction, i.e., 1,2-shift of a group from the 
a-position to the thiocarbonyl carbon with a concomitant loss of 
sulfur, is a new mode of photoreaction for thiocarbonyl compounds. 
This reaction most likely proceeds as shown in Scheme I. The 
vinyl sulfide 4 cannot be an intermediate of 5 since 4 is inactive 
under the reaction conditions. 

Interestingly, 1 is thermally more stable than the corresponding 
aldehyde 6. The thermolyses of 1 and 6 obey first-order kinetics, 
and the half-lives of 1 and 6 in toluene-rf8 at 70 0C are 16 and 
1.7 h, respectively. The thermodynamic parameters for these 
reactions are shown in Table II along with those obtained for 
a-silyl ketones by Brook,17 which are in good agreement with those 
for 6. Comparison of the parameters for 1 and 6 shows that the 
stability of 1 compared with 6 results mainly from an enthalpic 
factor, i.e., the much smaller bond energy of Si-S than that of 
Si-O. 

The thioaldehyde 1 was reduced with sodium borohydride to 
give the corresponding thiol, (Me3Si)3CCH2SH (8),15 quantita­
tively. 

When 1 was treated with methyllithium and ferr-butyllithium, 
the olefin 5 was formed in 79% and 34% yields, respectively, 
although in the latter reaction the thiol 8 (35%) and 
(Me3Si)3CCH2S-I-Bu (9) (10%) were also produced. The cor-

(17) Brook, A. G. Ace. Chem. Res. 1974, 7, 77. 
(18) Bock, H.; Seidl, H. J. Organomet. Chem. 1968, 13, 87. 
(19) This compound has been reported but not obtained in the pure form: 

Dunogues, J.; Jousseaume, E.; Pillot, J.-P.; Calas, R. J. Organomet. Chem. 
1973, 52, CIl . Seeref 15. 

responding Grignard reagents react with 1 in a similar manner 
but with a much slower rate. 
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Mechanism-based inactivation1 by enzyme-generated acetylenic 
ketones2 has been assumed to occur by Michael addition of an 
enzymic nucleophile to these potent electrophiles. No structural 
information has been presented, however, that supports the pre­
sumed inactivation mechanism. Recently, we have extended our 
studies of acetylenic steroid inhibitors of estrogen biosynthesis to 
human placental estradiol dehydrogenase (E2-HSD),2a an enzyme 
that catalyzes the interconversion of estrone and estradiol. We 
now present evidence that Michael addition of the e-amino group 
of a lysine residue accompanies inactivation of E2-HSD by en­
zyme-generated 3-hydroxy-14,15-secoestra-1,3,5( 10)-trien-15-
yn-17-one3 (2) (Scheme l). 

Incubation of 40 nM [15,16-13C2]-14,15-secoestra-l,3,5-
(10)-trien-15-yne-3,17(3-diol4 ([13C2H) with 100 nM NAD+ and 
E2-HSD5 for 18 h at pH 9.2 produced >90% loss of initial en­
zymatic activity.6 The 13C NMR spectrum of the inactivated 
enzyme did not reveal any major features not present in the 
spectrum of enzyme inactivated with natural-abundance steroid 
(Figure la,b). We attribute our inability to observe the steroidal 
13C resonances to the large molecular weight of the enzyme (MT 

= 68 000) and its tendency to form aggregates in the absence of 
glycerol,7 affording relatively long correlation times and line 

(1) (a) Walsh, C. Tetrahedron 1982, 38, 871-909. (b) Abeles, R. H. 
Chem. Eng. News 1983, 19 Sept, 48. 

(2) (a) Auchus, R. J.; Covey, D. F. Biochemistry 1986, 25, 7295-7300. 
(b) Tobias, B.; Covey, D. F.; Strickler, R. C. J. Biol. Chem. 1982, 257, 
2783-2786. (c) Strickler, R. C; Covey, D. F.; Tobias, B. Biochemistry 1980, 
19, 4950-4954. 

(3) Auchus, R. J.; Carrell, H. L.; Covey, D. F., submitted for publication 
in J. Org. Chem. 

(4) Prepared as in ref 3 except using [13C2]HC=CLi in the last step (from 
99% [13C2]HC=CH and K-BuLi in THF/-78 0C15). 

(5) Purified from human term placenta by the method of Murdock et al. 
(Murdock, G. L.; Chin, C-C; Warren, J. C Biochemistry 1986, 25, 641-646) 
except that a second ammonium sulfate precipitation was added after the heat 
step and that Reactive Red 120-Agarose was used in place of Reactive Blue 
2-Agarose (Sigma Chemical Co., St. Louis, MO). 

(6) Inactivated enzyme was concentrated by ultrafiltration and dialyzed 
vs. four changes of 10 mM KPO4, pH 7.0, containing 1 g/L bovine serum 
albumin in the first two changes, both at 4 0C. The dialyzed protein was 
filtered, further concentrated to ~1.5 mL by suction ultrafiltration, and 
diluted with D2O to ~1.7 mL in a 10-mm NMR tube. 
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